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Allllncl-in onIer to provide some ..... iato the "-IIOD at dynamic plastic buc:kIilw. the response
of an iIIlperfedion-lcelitiw idealised model with eIutic:-pIutic sprinp to siIIIuIate IIIIferiII plasticity was
UIIIIiDed .... tbeoreticaIlIId IIIIIIlCricaI meIhods.

The tbeoreticaI predids that dyMIIic pllstie-elulic buckJinI pans the response for SlIIIII
iIIlperf...... dJ8IIIic -..uiIty ocran eJuticIIIy for IIqe iIIlperf..... PurthwaIare. the
dyumic btlcldiallOId at. model ...... iIIperfectioas is ........... tile CClI'I'IIII_.1tIIic buckIiaa
!old becauIe or the t&lenat eIastic-pIastic deformation histories in the spriap cIuriJw the statit and...-........

The ....-icaI1llIdy reveals two diUct fOfllll at dyumic rapoase Down IS "direct" IIId "indirect"
dyumic buckN wIIidl occur wilbia specific ,... of the pnmeten.

The various resuIIs pmeoted herein indicaIe that dynamic plastic buckIina is imperfection-sensitive
pIrtic:uIarIy for "direct" dynamic buckJina.
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/110. mI masses defined in I'll- I
r LIII'2
I time
" displaa-t defiDed in I'll- I(b)

" .. liz displacements of sprinp I and 2 in I'll. I
Yo vertical displacement in I'll- l(b)
Y YtiLz_

z.i SLz.SLz
z, ddiDed by eqn (26)
z· maximum value of z

F.. Fz forces in sprinas I and 2, respectively
K, K, sprina coefIicients deIined in I'll- 2
L .. Lz Jeaath of members shown in I'll- I(a)

P total vertical load IS shown in I'll. I(b)
Pc Euler buckJina load (eqn S)
PD dynamic buc:klina load
p... reduced modulus load (eqn 7)

P, canaent modulus load (eqn 6)
p• .ximumload

Q.. Qz. Q ddiDed by eqns 4(j-I). respec:tiveJy
fJ charact«istic for softenina non-linear sprin& at A in I'll- l(b)
f ",.z/..Z

A KJK
{ horizoaIaI dispillCegnt of A in I'll- l(b)
E iniIiaI imperfection i8dicaIed in f'ia. I(a)
1 *'11
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1\1 .-.dimensional time step in IIUIIIeric:aJ aaalysis
o A/(IH)

()' i()/iT

tPrelCnt address: Departmeat of Mec:baIIicaI Ea,iDeeriDa. Uaivenity of Liverpool. P.O. Box 147. Browlllow HiD.
LiverpooIlM lBX.~

*Present address: Department of ae-aJ J!IIIjDeeIq. Univwsity of IIIiDoia, Traaaportatioa 8lIiIcIq. UrbIaa,
IL 61101. U.S.A.



970 N. JONES and H. L. M. OOS REJs

I. INTRODUCTION

The phenomenon of dynamic plastic buckling, which is characterised by wrinkling as in static
buckling, may occur when structures arc subjected to large external dynamic loads. It usually
develops during motor vehicle, train, aircraft and ship collisions and is of some interest in
aerospace, nuclear and petroleum engineering.

Perturbation .......s of analysis have been used to explore successfully the unstable
dynamic plastic response of rods impacted axially[J], rectangular plates subjected to in-plane
loads [2, 3], cylindrical sheUs and rings acted on by various dynamic loads[4-6, etc.] and
spherical shells loaded impulsively(7, 8]. This theoretical procedure is predicated on the
assumption that the characteristic wrinkling of structures associated with dynamic buckling
develops from initial imperfections in the geometry or impulsive velocity fields. Refcrence(6}
contains some comparisons between the theoretical predictions of perturbation analyses and
experimental results for cylindrical shells and rings I~ impulsively. Generally speaking,
these comparisons and those for several other structures show that the perturbation method
may provide reasonable estimates of the corresponding experimental values which are adequate
for desip purposes. However, there are many dynamic plastic bucldiaa problems for which the
perturbation method of analysis is unsuitable. These problems could be examined using
numerical schemes [9-11]. Unfortunately, it is an expensive and time-conaumiD& exercise to
seek dynamic buckling loads with wholly numerical methods[l2] so that valuable blsiaht into
the general problem of dynamic plastic buckling is often Iadtia&. Furtbermore, Hartzman[9]
found that the dynamic buckling pressure of a particular elastic-plastic perfect spherical dome
was larger than the corresponding static collapse pressure in contradistinction to the obser­
vations of other authors for elastic caps subjected to step pressures of unlimited duration[J3].

Shanley[14] examined the behavior of a simple idealised model and obtained valuable
insight into the static inelastic buckling of a column. SeweJl[15] discussed this topic further,
while Hutchinson[l6] has explored the potential importance of initial geometric imperfections
on the static plastic buckling of a simple model. The influence of initial geometric imperfections
on the dynamic buckling of a simple elastic models has been investigated by Budiansky and
Hutchinson [17-19] and Danielson[20]. Huang and Tsai[21] used a phase-plane procedure to
investigate the dynamic snap-through behavior of a simple shallow elastic perfectly plastic truss
without bending and axial inertia effects.

In an attempt to gain some insight into the simultaneous influence of material plasticity and
initial geometric imperfections on dynamic buckling, a theoretical study is presented for the
idealised elastic linear work hardening imperfection-sensitive model shown in Fig. I. This

(0) lb)

Fig. I. Simple model. (a) Initial position: (b) Deformed position.
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.a.,. IIIIDdeJ is similar to that employed by DanieIson[2I). ..... it is lDOdified to
inducle the inftuence of material plasticity in a manner similar to Hutc:hinson[16] for static
loads.

1 BASIC BQUATIONS

The simple mode) shown in rll. I(a) was constructed by combiniltl the essential features of
the models used in Refs. [16,20]. Danielson used the imperfection-sensitive model iUustrated in
rIC- 1 of Ref. [20] to study the characteristics of dynamic elastic buckJina, while the imper­
fection-sensitive model in rll. 1of Ref. [16] allowed Hutchinson to explore the static postbuck­
lina behaviour in the plastic ranae.

The various members in rll. )(a) are riPI and weightless and the only masses, mo and m..
are concentrated at H and A, respectively. The unloaded model has a stress-free initial
imperfection l. while the member FHO is constrained to remain horizontal. Member FHO and
pin B are constrained to mover vertically in frictionless guides. Frictionless pins are located at
A, B and I and the behavior of the softenina non-linear spring at A is governed by the relation
F =fJt2, where t + j is the total horizontal displacement of A as indicated in rll. l(b). The
material behavior is simulated by spriqs 1 and 2 with the load-displacement characteristics
shown in rll. 2 and, for convenience, it is wumed that the sprinp have identical charac­
teristics.

Now, it is stnightforward to show that the deformations of sprinas 1and 2 are

where

"I = u - rt and "2 ="+ rt, respectively, (II, b)

(2)

"provided (t+i>/~ce 1. The equations of motion may be written in the dimensionless form

and

Z"-(Z+.i)(QI + 02)- r(QJ - 02)/2-az2= 0,

when neglecting the vertical acceleration of ml, and where

y =yol~, z=d~, i= D~, r =LI/~' 1IJo2 =2K/mo,

(J}1
2 =2Kr/m.. E =1IJ1

2
/1IJo

2
, a =LJJ!2Kr, Pc =KrL..

QI =FI/Pco Qz =FJPco Q= PlPco '" = IIJI/, and

( )' = a( )/aT.

I
I UNLOADING

I
I

I
I

I

11, lla

Ffl.1~ c:MnderiICics of ..... 1II1II 2.

(3a)

(3b)

(4a-m)
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F. and F2 are the forces in springs I and 2, respectively, while P is the external load applied at
H.

3. STATIC BEHAVIOR

The equations in the foregoing section predict that the static elastic Euler buckling load for a
perfect model (i.e. f = 0) is

while the tangent modulus buckling load is

P,=K"L].

The reduced modulus load is

P",. =2KK,rLt/(K +K,)

and occurs when bifurcation takes place with no change of the external load.
It is found for the imperfect case (i.e. f¢ 0) that

PIPe =z(l- az)/(z +z)

when springs I and 2 remain elastic. Thus,

(5)

(6)

(7)

(8)

(9)

where P* is the maximum load (buckling load) which occurs at the associated displacement

If zis sufficiently small, then eqns (9) and (10) predict

P*/Pc == 1-(4ai)l/2, i~O.

(10)

(11)

The elastic characteristics of the simple model in Fig. 1(a) according to the above equations are
illustrated in Fig. 3.
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FIg. 3. Static elastic characteristics of simple model, (a) eqn (8), (b) eqns (9) and (II).
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SpriIc ..... 2fint commences to respopd pIuticaIIy ... 1f2. A,. A, is defined in
r... 2. If tfae initiII-..rectioa amplitude (I) is suIIciRdy _ ' 4DItiaues withs..... IT_ 2~ pIuticaUy and sprOw I .. ,. F UIdiI eveaa.Dys.... ... I .. when "1· A,. oilif I.' with bath ....
res...... pllIIiI:., until tpriDa number I CClI Ell" to unIaed .itlfclly.~. spriaa
number 2 continues to load plastically and sprina IIWIIber I unloads elastically from its eII'Iier
plastic state.

The maximum load p. may be expressed in the form

(12)

where

(.13)

is the value of z when spring number I commences to unload elastically and PI is the
maximum load that the simple perfect (l=0) model can support. If bifurcation occurs at the
tangent modulus load given by eqn (6), then

PI"" P,ll + ,\(1- '\)/{ar(1 + ,\)}+ J (14)

and

P*/Pl =- 1- (4ai/,\)112 (IS)

for sufficiently small values of i, where

,\ =K,/K. (16)

The analysis of this sequence of loadinI which leads to eqns (12}-(1S) is quite stniIbtfor­
ward but the details are not presented here because Sewell [IS] and Hutehinson[l6] have
discussed the static plastic behavior of simple models without and with initial imperfections,
~spectively. In fact, eqns (l2HIS) are respectively similar to eqns (11), (10), (9)t and (12) in
Ref.[l6]. The general features of the response sketched in rig. 4 for this simple model confirm
the characteristics observed by Hutchinson for the model shown in F... 1 of Ref. [16].
However, of particular interest is the observation that eqns (11) and (1S) demonstrate that the

d

\

"0.75 a'·,/ELASTIC STATIC BUCKLING
p* .........-1'- . "',Pc b·.......
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JliI. 4. of 1llllllIdiII (9) ( ), (12)>'' (I) (lit),
udcwvebcil I 2 IO,'.I,".O';"

IIId A,LJU·0_

tTbe IIIIIaaY betweeII the YUiIbIes here aud in Ref. (16] Ihows dill the oquatioD folowiJl HutdJiDIon'.1lID (9) hu 2IIr
iIIIteId of fir U in eqn (14) here.
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simple model is more imperfceti8a ve in the plastic J'IDIC than in the elastic faille
because an imperfectioa IfIPI,ih+ u rise to the same relative ICduction of the bucklias
load as does i in tho~ case. It is also evident from rig. 4, for example, that an
imperfection may~ to buckle in a wholly elastic maaacrevcn.thauIh &he
perfect model would plastically. An interested reader is referred to Ref.[l6} for further
discussion.

4. DYNAMIC BEHAVIOUR WITH Il1o=0

The dynamic behaviour of the simple model in Fig. I with mo =0 when subjected to a step
loading of constant magnitude and infinite duration is explored in this section using a theoretical
analysis.

Equation (3a) with E =0 (i.e. mo =0) predicts

so that eqn (3b) becomes

Z" - Q(z +i) - r(Q. - Qz)/2 - az2=0

with the associated initial conditions

z(O) =z'(O) =O.

The characteristics of springs I and 2 are identical and are illustrated in Fig. 2.

(17a)

(17b)

(l7c, d)

4.1 Wholly elastic response
If it is assumed that the model remains elastic throughout the response then the forces in

springs I and 2 are respectively

according to eqns (I). Thus,

u =PI2K

when using eqn (17a) and

so that eqn (l7b) becomes

Z" +(1- PIPe)z - az2=iP!Pe

which gives

(1Sa, b)

(19a)

(19b)

(20)

(21)

when satisfyill8 eqns (l7c, d).
Equation (20) is an autonomous equation so that it is suitable for a phase plane analysis

using the variables z' and z[22]. It is straiahtforward to show tbat there are two sinplar points
on the z axis (z' =0) one of which is a ccoter or vortex point and the otber a saddle point
according to the stability theorem[23]. The maximum value of z=z* occurs when z' =0 in eqn
(21) and is given by

(22)
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The IIrpst possible value of PIPe occurs when the radical in eqa (22) is 1.«0, or

(1- P,jP,;Y = l6tJiP,j3P" (23)

where Po is the dynamic buckling load. Equation (23) is also found from eqn (21) with Z' =0
when dilereatiltial with respect to Z. then .....it... z... z· and dPldz· - O. Moreover, the
value of z· accordina to eqn (22) with Po given byeqn (23) coincides with the saddle point on
the z axis in the z' - z phase plane.

Now, in order for the foreaoiDl analysis to remain valid it is necessary that sprinp I and 2
behave elutieaJly tbrouIbout the entire response. This is assured if the force in sprina number
2 remains less than the yield force (Fz=KA,), or

P,jPc ~ (40A,J3L. -1)(20rl3 - trl (24)

accordina to eqns (ISb), (19&), (22) and (23). .
Budiansky and Hutchinson examined the dynamic elastic bucldina of the idealised column

shown in Y... 3oflet.(17)aad uncovered abucldinacriterion identical toeqn(23). Incidentally, if f
in eqn (23) is eliminated usiDl eqn (9), then

P,jp· =O.7S{(l- P,jPe)/(I- p·/Pe)}Z (25)

which as remarked in Ref.[l7] lives 0.75 s P,jp· s I, the lower values of Po beiDa associated
with the more imperfect model.

4.2 Bltutic-pltutic ruponst
It is evident for sufticiently large loads that plastic flow first occurs in sprina number 2 just

as motion cales accontiDa to equality (24). Thus, dynamic loads which violate inequality (24)
cause plastic ftow in spring number 2 at some intermediate time duriIta the response. This
sugests that the elastic lII8Iysis in Section 4.1 remains valid durina a first phase of motion up
to some time when "z = i1" or

z, =A,IL. - rP/2Pco (26)

The subsequent respoase is controlled by plastic behaviour in spring number 2, while sPrina
number I remains elastic.

The sprina forces are therefore

(27a,b)

durina the second stage of motion, where all the barred quantities are evaluated at the end of
the first staae of motion. It is straiabtforward to show that

where

F.- Fz=(K - K,)" - rLz(K + K,)z - (K - K,)A" (281)

,,- rLzz(K - K,)/(K +K,)+ PI(K +K,)-A,(K - K,)/(K +K,). (28b)

Thus, eqns (I7b), (26) and (28&) live

where

A -2{}-PlPn n-Al(1 + A), and

B =40{fP/Pe-(1- A)z,/(l + A)}.

(29)

(308-c)
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The phase plane method can be used to study eqn (29) and show that two singular
points occur on the z axis at

Z1,2 = (A ± V(A2 - B»/2a,

where z. is a saddle point and Z2 is a center or vortex point.
The first integral of eqn (29) is

zt2 +Az2
- 2az3/3 =Bz/2a +0- A)z/IO +A),

(31a, b)

(32)

where the constant of integration was found by matching z' at the start of the second phase of
motion with eqn (21) at ZT The greatest value of Z (say z*) on a closed trajectory in the phase
plane occurs when z' =0, or

(33)

If the location of the saddle point z. given by eqn (31a) is identified with z*, then eqn (33) gives

(34)

where P in eqns (3Oa) and (3Oc) for A and B is identified with the dynamic buckling load (PD).

It should be noted that z· =0 according to eqn (29) with z=Z'.2 given by eqns (31).
Now, the foregoing theoretical analysis is valid provided Zy 2: 0, or u s; Ayt, which leads to

(35)

according to eqn (26). Moreover, P,jPe must be larger than the r.h.s. of inequality (24) so that
this analysis remains valid when

(36)

4.3 Plastic-elastic response
The equality (35) is associated with u = Ayt which implies that springs I and 2reach the yield

force (KAy) when ~ = O. Thus, dynamic loads which violate inequality (35) would give rise to
plastic behavior in both springs prior to the motion of mass mi' The force in each spring is
equal when ~ =0 so that both must be either elastic as in Sections 4.1 and 4.2 or plastic as in the
present case. However, once m. commences motion (i.e. {>O) it is evident from eqns (1) that
spring 1 must unload elastically, while spring 2 continues to load plastically. In this circum­
stance it may be shown that

and

Ii =PI2K, +(1- KIK,)Ay

is the compression of the springs immediately prior to the onset of motion of mass mi'

Equations OTh) and (37a) give

z· +(20 - PIPe)z - az2 =iPIPe

(37a)

(3Th)

(38)

the solution of which must satsify the initial conditions (l7c, d). If eqn (38) is solved in a
manner similar to the elastic case outlined in Section 4.1 here then

Z,2 +(20 - PIPe )Z2 - 2az3/3 =2ziPIPe

til refers to the first phase of motion and is given by eqn (191).

(391)
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and the dynamic buckling load is given by the expression

m

(39b)

which reduces to eqn (23) when ,\ = I.
The fORlOiRlInIIysis remains valid provided PrJPc ~ 2A,JrL. according to inequality (36).

Furthermore, we note eqn (39b) requires PrJPcS 20 so that

(40)

in order for this analysis to be appropriate.
If the dimensionless initial imperfection (i) is eliminated from eqn (39b) using the ap­

proximate expression for the maximum static load (P*) of the imperfect model (eqn IS>, then
forsmfic~ntlysmUl~uesofi

Po/Pc =-0.75(20- Po/Pc~/{,\(I-P*/Pt)'l), (41)

where PI is the maximum static load of the perfect model which is given by eqn (14). Equation
(41) with ,\ =I reduces to the corresponding equation for the dynamic elastic case which is
obtained from eqns (II) and (23) when i is small.

A comparison of eqns (23) and (39b) reveals that the load associated with dynamic bucIdinI
of the model in the plastic range is smaller than that required when I20th springs remain elastic.

5. UNLOADING WITH 11Io=0

The theoretical analysis in Section 4.1 for the wholly elastic response of the idealised model
in rig. 1remains valid for any reversed loading in springs I and 2 (i.e. Z' <0) so that a complete
pbale plane portrait may be constructed as shown in Fig. 5 for a particular case. However, the
analyses for dynamic elastic-plastic and plastic-elastic behavior in Sections 4.2 and 4.3,
respectively, only remain valid provided Z' ~ O. The deformations of springs I and 2can reverse
and unload elastically when Z' sO leaving the springs stretched permanently as indicated in Fig.
2. The theoretical study in this section investigates the influence of elastic unloading in the
dynamic elastic-plastic and plastic-elastic cases to allow for completion of the pbase-p1ane
portraits.

F... 5. Phase plane trajectories lor the d}'lUIic eIutic case with 11Io" O. Equations (21) and (23) with
II • 10,. ~.0.25.
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5.1 Elastic-plastic case
It is evident from the theoretical study in Section 4.2 that spring number I in Fig. 1(a)

remains elastic throupout motion, wille .,nng 2 is elastic initially during the first phase of
motion but behaves plasticaUy when z~ z, and z' ~0 during a second phase of motion, where
z, is given by eqn (26). The forces (F'T, F!) in springs I and 2at the end of the seeoad pbase of
motion are liven by..(27) with z' =O. If it is assumed that the subsequent .-aviour of both
springs is elastic during a third phase of motion, then

(42a. b)

where all variables with z' = 0 at the end of the second phase of motion are indicated with an
asterisk (*).

It may be shown that eqns (I), (4), (5), (16), (27), (28b), an9 (42) give

QI - Q2 =2(1- A)z*/r(1 + A) +(1- A)Q/(I + A) - 2z/r - 2(1- A)~,I{rLI(I+ A)}. (43)

which allows eqn (l7b) to be written

z"+(1- Q)z - az2=(I-A)(z*+ tQf2-A,IL1)/(I + A)+iQ. (44)

The solution of eqn (44) which satisfies the conditions z =z* and z' =0 at the start of the third
phase of motion is

Z,2 +(1- Q)Z2 - 2azl/3 =Cz + D, (45)

where

C =2iQ + 2(1- A)(z* - z,)/(I + A) (46a)

and

D=(1- A)(z/- Z*2)/(1 + A) (46b)

when using eqn (32) to give z*.
Springs 1 and 2 remain elastic throughout the third stage of motion provided (u* - ~,) s

r~z s rL2z*. or

(1- A)z*/(1 + A) - 2z,l(l + A) s z s z*. (47)

5.2 Plastic-elastic case
It is evident from Section 4.3 that both springs I and 2 immediately respond plastically due

to a sufficiently large step loading P, but spring 1 then unloads elasticaUy when motion
commences, while spring 2 continues to behave plastically. Thus. the response examined in
Section 4.3 consists of a single phase of motion which terminates when z = z*. where z* is
given by eqn (391) with z' =O.

If it is assumed that the subsequent response of the idealised model in Fig. I is governed by
elastic behavior in springs I and 2, then

and

FI =P/2 +Kr~(K - K,)z·/(K + K,) - Kr~z

F2=P/2- KrUK - K,)z*/(K +K,)+ Kr~z.

(48&)

(48b)

where all variables with an asterisk (*) are evaluated when z' = 0 and z =z*. Thus. substituting
eqns (4), (5), (16) and (48) into eqn (17b) gives

z"+(1- Q)z -ar= Qi+(I- A)z*/(1 + A) (49)
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which has the solution

ZIZ + (1- Q)Z2 - 2az3/3 =Ez + F

when satisfying Z' = 0 at z = z* and where

E=2Qi+2(I-A)Z*/(1 + A)

F =- (1- A)z$2/(l +A)

and z* is liven by eqn (39&) with z' =O.
The springs I and 2 remain elastic for further motion provided

(1- A)z*/(I +A)~z ~ z*.

979

(50)

(51a)

(5Ib)

(52)

6. NUMERICAL STUDY OF DYNAMIC BEHAVIOR WITH IIIotiO

The theoretical analyses in Sections .. and 5were developed for the model in rJl. I(a) with
Il1o = 0, while in this section a numerical procedure is used to explore the dynamic buckling
response when me yi O.

It is assumed, for convenience, that springs J and 2 have the same characteristics, which
are indicated in rig. 2 and may be expressed in the form

where

x. =uJLz,
XI =y-z(z+2i)-rz, and X2= y- z(z+2i)+ rz

(53)

(548)

(54b,c)

from eqns (1) and (2). '1'. =1 when Q. <0, or when Q. <Q:-, where Q:- is the largest
dimensionless force subjected to spring a or the dimensionless yield load (A",LI) when no
plastic ftow has occurred. '1'. = A when Q. ii!: Q:U and Q. >0 and provided Q:U >A,rIL•.
. Equations (3) may be written in the form

and

EY:' +reQ'III +Q",,)/2 = rQ/2 (55a)

Z:. - (Zlll +f)(Q•• +Q",,)- riQI. - Q",,)/2- az.2=0, (55b)

where the subscript m implies evaluation of the variable at the dimensionless time f. and the
exterDa1load is a step load of constant mapitude and infinite duration.

Equations (55) may be recast into a set of non-Jinear aI8ebraic equations usin& fiDite­
ditference expressions(24) as shown in the accompanyina Appendix. This set of equations was
solved at each time step using a standard Newton-Raphson iterative procedure(25). Further
details of the numerical scheme are presented in the Appendix.

7. DISCUSSION

The phase plane portraits for the dynamic elastic-plastic and dynamic~tic cases
are respectively drawn in Pip. 6 and 7 for a puticu1ar set of .......... willi ....O. It is
evident froID of these &pres that the dyuaaaie response of the model ,... eadreIy
..(Le. mocteI don to."state)after ......... froIIl the state (z' -0, z- z-)
proYiled P:'IIi PDt __ PD is de8Iled by eqns ~) and (]9b). 1'Ilu, pIutic bella_ of the
icIeItited coMIm in Pfc. l(a) with me·0 0CCI8'I GIlly d1riIa the ftnt excanion of 1111 with the
.............,.......when PSP".

Aca....CWfe for the dimeasioaIeu~ bf"*'"w.... PrJPc 8SIOCiIted with the
............... imperfections 41 is pIoUed ill FJa. 8 for a puticuIIr set of ....1..' and
compared with the corresponding static buckIiDa... taken from PIa. 4. IMquIIity (24) is an



980 N. JONES and H. L. M. DOS REls

0.03
z

pif' 0.536

0.004

I 10.01
I I
I I I
I I /

I .. \ " IpI \ \ t" I, if' 0.5265
\ \ " / /' ...,_t~",. c

0002 ' \ " I- • I \ 1- I £..
\ " I .,...-~;P. '0.525\ ,...__ ~'.,p c

" / Po' 0.52
" , C... ,

"'~-~/f .0.51

C
-0.004

z'

rig. 6. Phase plane trajectories for the dynamic elastic-plastic case with "'0 = O. a = 10. A= 0.75. at = 0.05.
r= I and A,LJLI

2 =0.268. -----elastic behavior. ---eqn (32).
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rig. 7. Phase plane trajectories for the dynamic p1~tic case with "'0 = O. a = 10. A=0.75 and
aI =0.025. ----- eIutic behavior. --- eqn (39).

equality at point c in Fig. 8 so that dynamic buckling of the model in Fig. I is controlled by
wboUy elastic elects for larger initial imperfections (i.e. curve cd), while inequality (36)· is
satisfied on the portion be for which dynamic elastic-p1astic buckling prevails. The point bis
associated with the left hand side of equality (40). Thus, dynamic pJastic-elastic buckling
80verns the behaviour of the model for small imperfections which lie on the curve lib. It is also
evident that a model with large initial imperfections miIht buckle elastically when subjected to
dynamic loads, while the same model with small initial imperfections would buckle plastically.
Furthermore, initial imperfections are as important for dynamic plastic-elastic buckling as they
are for dynamic elastic buckling (see also eqns 23 and 39b).
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I. e

P*, PD a \. /STATIC ELASTIC BUCKLING
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o
af

F"... 8. Comperisou of dyaamic (PD) and static (P*) llul:Idq to.dl wilen 11ft. 0, • • 10, , = I, A. • 0.75 and
l:J.,LlIa· 0.268. -, :SIatic; -.,4yumIc:. (23) (eed, elastic), eqa (34) (be, eIutic-pIutic) and

eqn (39b) (ab, pIutic-eIIstic).

The sequence of plastic Ioadina and elastic uaJoIdins in sprinp 1and 2 are different for the
static and dynamic loadins cases shown in F"18. 8. If the initial imperfection is sufficiently small in
the static case, then both springs respond elastically until spring 2 yields plastically. Loadins
continues with spring I elastic and spring 2 plastic until sprins 1yields plastically. Further static
loading continues with both springs responding plastically until spring 1 commences to unload
elastically. Finally, spring 2 continues to load plastically and spring 1 unloads elastically from
its earlier plastic state until the maximum load carryina cap&city is reached.

The dynamic buckling load according to eqn (39b) for a perfect model equals the reduced
modulus load (WPc ) because the inertia of the pnbuckliq response is nqlected (i.e. mo =0).
Thus, the external step loading P can be accomodated by sprlnss I and 2 prior to any lateral
movement (t) of mass mi' In fact, the immediate response of both springs I and 2 is identical
for a given value of P, regardless of whether the model is initially perfect (al = 0) or has initial
stress-free imperfections (alJ4 0). The dynamic bucldiqloads in F"18. 8 are therefore larger than
the corresponding static ones for small imperfections which is due largely to the different
elastic-plastic deformation histories in the springs during the static and dynamic responses. It
should be noted that Hartzman{9] found that the dynamic buckliq pressure of a geometrically
perfect elastic-plastic spherical dome was larger than the corresponding static buckling pres­
sure. However, the dynamic buckling loads for the model in F"18. l(a) are smaller than the
associated static ones when the initial imperfections are larger than those corresponding to
point I in Fig. 8.

It is interestina to observe from the particular curves in F"18. 8 for models with initial
imperfections lyina within the ranae 0.1230 s afs 0.1372 that static loads cause plastic buckling
while dynamic Ioeds are respoDSlole for elastic buckJioa.

AtypicaIlJ'OWtb of the dimensionless dilplleeaent z* with the mapitude of the step load P
is shown in F"18. 9 for the elastic case according to eqn (22). The amplitude of z* is unbounded
when P =Po because the static post-buclding characteristics of the idealised model shown in
FIlS. 3 and 9 are always unstable. The dynamic buckliDl load when plasticity occurs in the
model is not given by the intersection of the static aDd dynamic curves as shown for the elastic
cue in FiI- 9, lIqeIy beclUse the history of IaIdina ucI UJOOtdill8 of spriap I and 2 Ire
diI..-t for tile two cates.

It is evilleat from Pia- 10 that the ..... ItrIin bardeninJ panuaetcr (A) aercises an
important .ect 011 the d,..uc buckJUw charIderiIIics and the model is more imperfection­
sensiti¥e for ...... values of A.

The theoretical results ditcussed above IDd presented in Pip. 5-10 were obtained usiaI the
analytical method outlined iD Sections 4 and S which was simplified by takina me· O. ID order
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EOUATION IB) ISTATlC)

EOUATION (22) (OYNAMIC)

04

Po

~

L
Pc

0.2

0.1

o : 10. Ol' 0.25

fiB. 9. Growth of muimlIm ampIituIIe of z with PIPe~ to • (8) and (22) for the static da$tic
8Ild d)'llllDic elastic cues with II • 10, III • 0.25 8Ild Il1o. O.

>. • 0.05

O~---''---~~_--l.__-J..__.....L.._
o 0.02 0.04

02

rill. 10. Inftuence of material strain~ ralio(A) on dYJlllllK: plastic-dastic~ wlIen Il1o=0
accordiJla to eqtl (39b).

to explore the iduence of mo. or flit',.... themetbod in Section 6 was used to obtain the
numerical results presented in FiBs. 11-19.

The variation of z with dimensionless time '1' is shown in Fig. II when tIIt/,...=0.316. It is
evident that a high frequency oseDtatioD is superposed on a dominant. mode which represemsa
lateral vibration of the idealised CQIumn about a deformed state. The period of thedOmimmt
mode grows as theverticaJ load P is incRased untiUhe dynamic bueklina load PJPt:isreached
when a form of "direct" buekling[26] oeeurs and the amplitUde of z (i.e.z·) becomes
unbounded as indicated in Fig. 13 for several values of the dimensionless imperfeetion(.f}.The
temporal variation of the dimensionless vertical displacement y shown in Fig. 12 is ap-
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proximately two orders of mapitude 18I'8e1' than Z and does not reflect any powth when
P =PD so that "It "2, and " Jiven by eqns (Ia), (Ib) and (2) wOuld remain laqely wWfected.
The dimensionless dynamic bucklina load when *"'''''=0.316 in FII. 14 is sensitive to the
mqnitude of the dimensionless imperfection for both the elastic: and elastic-plastic cases. In
fact, because of the factor "A. in the abscissa, the idealised column in Faa. • is more
imperfection .....itive for dynamic buckJiDa loads which cause an elastic-plastic: response than
for those procIucina a wholly elastic: behaviour.

The cbIracter of the reaponse in Pia. IS for *"'''''. 0.7S is cliferent to that when
""'''. 0.316. In this case, biIb~ vibrations are superposed on a domiDIDt mode
havilll a very ... period. The ... duration of the numerical CIIcuIations is therefore
important and the~ IoId was oIDined in the present CIIcuIations u the amaDeat 10Id
wbicII CIUIId z to eueed a spedIed value of z· witbiD the interval 0<., < 100. Tbia type of
behavior is....tothe "iDdirect"bUdc:Jina.......uamiDed byLoct(26], wboqaarinM a
dynuaic elastic: bt'Cklill pmbIem'" the results in fia. 17 indicate the rapid arowth of z· u P is
incnlued toward. the dyBuaic .............. foad in the currut 1tUdy. Apia, die amplitude of
the , ctilp1lcemeDb in .... 16 are approUDately two orders of ............... thin z and are
iDtcDIitive to the dramaticc.....ofz Dlll'the dynamic buct-'Ioad.lt i. ippIIIDt from Pia. 18
that tile results for the idealised model are leu iaperfectioHensvefor "indirect"backIiqwhen
*"'*'0· 0.7S than the "direc:t buctIiq resulb for ",''''0. 0.316 in FiI. 14.
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The numerical values are summarised in Fig. 19 and the "direct" form of bucklina (e.g. Fig.
11) is typical of the behaviour when 0< till/bIG <0.5, while the "indirect" type of dynamic
buc:kJiD& illustrated in rJl. IS is typical of the response when 0.5 < till/bIG < 1. The sensitivity of
the dynamic buckJina load to the mqnitude of the time step A., used in the numerical study is
also indicated in rll. 19 when tIIdbIG =0.316. However, the numerical results appear to be less
sensitive for the ..indirect" buckling case because, when OIl/bIG =0.75 and the values of the
reIDIiaina parameters are Jiven in the title of rll. 19, the dimensionless bucklina load (PoJP,J is
0.38165, 0.38155, and 0.38305 for dimensioDiess time steps (A.,) of0.02, 0.03 and 0.05, respectively.

The aeneraJ form of the numerical results in FII. 19 is similar to that found by Danielson[20]
for the wholly elastic case. In fact, Danielson's approximate theoretical result for 0Stili/bIG:'!:

0.5 is the same as eqn (23) here which predicts PoJPc =0.8 for the parameters used in FII. 19.
DIIIieIsoD's approximate tbeoreticaI predictions for the range 0.5 SOIl/bIG < 1.0 is given by eqn
(l6b) in Ref.[2OJ which lies sIiJIrtIy below the numerical values in FII. 19.

The numerical~s demonstrate the extremely complicated dynamic buckling
behaviour of the simple idealised model illustrated in FJS. I when subjected to a step loading
which is the most seven form of loading accordiDa to Kao and Perrone[13]. As already
reIMI'ked, the dynamic buekti", load is sensitive to the duration of the ftUIIIeI'icaJ calculations
(Le........ value of .,) which is particularly evident in F". 15 for the "indiIect" bucklina
ClIO IIId to a lesser extent for the ..direct" bld"ina behaviour in F". II. In addition, the
muialm acceptable values of z(z*) must be~ in order to determine a d)'D8Dlic
buckIiIIs Ioed. The numerical results in FIlS. 11-19 were obtained with either z· == 0.015 or
z* • 0.02 and FIlS. 13 and 17 indicate that the dynamic buc:kJina loads are insensitive to the
values of z· -viDa these mapitudes. However, the IJIIIDitude of the d)'D8Dlic buc:kli", load
would be sensitive for smaller values or z·, while the dimensionless time ., when the dynamic
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buckling load is reached would be sensitive to z* reprdJess of its value. Thus, it is important to
specify the values of z* and T... associated with the numerical calculations of a dynamic buckIina
load.

A comparison between Figs. 8 and J4 reveals that the dynamic: elastic-plastic: results with
mo ~ 0 lie above the corresponding static: elastic-plastic: values, a circumstance which was also
found when mo =0 for initial imperfections smaDer than those corresponding to point I in FJg.
8. The dynamic elastic bucklina curves in FIlS. 8 and 14 both He below the corresponcliJll static:
elastic values. It is evident from FIlS. 8 and 18 that due to the Berent nature of the buckling
~nse both dynamic results in FJg. 18 lie below the corresponding static values. The dynamic
el~plastic buckling curves in FJ8. 18 lie above the associated d)'lllUllic elastic resuIts when
bI,'" = 0.75 a phenomenon which was not predicted by the simple theoreticalllDB1ysis with
mo. 0 (bI,'..=0) for ..direct" buckling in Section 4.

The influence of dampina was neaJected in the present study. Lock[26] examined the elect
of viscous damping in his theoretical investigations on the elastic: instabiHty of a sbaJlow
sinusoidal arch. Damping was found to reduce the "indirect" Sll8PPing pressure and to be
responsible for an increase in the "direct" snappioa pressure. In other words, the dynamic
bucklina pressures were closer to the correspondiaa critic:al static pressures thaD were those
without damping and the eftect was particuiarly marked for the ..indirect" saappiaa cue. In the
present study, the dynamic buckHqIoads are less than the correspondina static 10Ids except
for the ..ctirect" dynamic eIastic-pIastic inability results in fia. 14 for 0),'"-0.316 and the
dynamic pIastic-.tastic results with imperfections smIIler thaD those at I in FJI. 8.

It is import8t to..,.... that the tbeoreticaI pndictions and discussion herein refer only
to the ideaIiIed model shown in Pia- I(a) with a restricted I'IIIP of parameters. However, it
milht be expected that some features of the response would be reflected in the dynamic
behaviour of actual structures as already remarked with regard to Hartzman's[9] aumerical
investiption OD a spbericaI dome.

a. CONCLUSIONS

The imperfection-sensitive ideaJised model ilIuJtrated in FJ8. I, which bas elastic-pIastic
spriap to simulate material plasticity, was subjected to a step loadiaa and the response
examined .... theoretical and IIUIIricaJ 1DItIIods. An exact tbeoreIicaI solution was
developed inSectioRs4aad 5for theperticularcuewhen 1JIo·o(i.e. 0),''''' -0), while aauaaericaJ
scheme was presented in Section 6 for the more aenenJ case when 0),'.."O.

It was found that the stable response of the model with mo = 0 shakes down to an elastic
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state after any plastic behaviour during the first excursion of mI. Dynamic plastic-elastic
buckling governs the response for small initial imperfections. while instability occurs elasticially
for large imperfections. It transpires that the dynamic buckling load of a model with small
imperfections is llU'lCf' than the corresponding static buckling load because of the different
elastic-plastic deformation histories in the springs during the static and dynamic responses.

The numerical study for a model with mo;i! 0 (i.e. wI/WI);i! 0) reveals two different types of
dynamic buckling which are similar to those observed by Lock(26) for a dynamic elastic
buckling problem. A "direct" form of dynamic instability occurs when 0~ w.1WI) ~ 0.5 while an
"indirect" type is associated with 0.5 ~ wdWI) ~ 1.0.

The various results presented herein indicate that dynamic plastic buckling is imperfection­
sensitive particularly for "direct" buckling within the range 0~ wl/Wl) ~ 0.5.

Aekllowltdgemtllts-The authors wish to record their gratitude to Dr. N. Perrone and Dr. N. Basdekas of the Structural
Mechanics Propam of O.N.R. who largely supported this investiption throuah contract number NlllIOJ4-76-C-0195. Task
NR 064-510. The authors are also indebted to Mr. E. A. Papqeoqiou who assisted with the nllJlleriC:al calculations.
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APPENDIX
This appelIdix contains the details of the numericallCheme used to solve cqns (55).
Now. for I1IIkieftt1y smaI1 time increments. the m.asioDIess fon:a in spriap I and 2at the dimensionless time T.. are

related to the forces in thesprinas at T._I in the following manner:

(AI)
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which when • eqns (S4) give

where

QI. +Oz", =A+(Cy. - Cz,i - Ez,. - G)/,z
QI. -Oz", = 8+(0,. -t>z.z-F:,. -H)/,z

A 0= QII._II+(h._I" 8 - Q".-II - (h._II,C-.I+.Z, O·.,-.z, E- ••(21+r)+.zCU-r),

Fa .1(21+ r)-.zC2I-r), 0;: 1f'IZII.-I,+.zZ21.-11

H 0= "IZII.-II-.zZ21.-11-

(A2a)

(A2b)

(A3a-h)

The dimensionless ICCCIenIions in eqns (55) are approximated • HouboIt'l tbird order bIctwInIs finito.diIerence
scheme(24)

(A4)

(A6I-O

and a similar expression for z;' with 7. instcIld of Y.. where 4, is the dilnellilllllell tiIIIc step, IDd die coeIicients
cr. - 2, A. - - 5, "..4, .. - -I and Y. - 7. - 0 provided III ~3 when Ill·0 ..r.. to die iiIiII CClIdIkw .. T· O.
How die 6eIiIious iIeIIctM.'_1 -'-Z.y be expressed in terms of ,., ,I.,.-'I by.............erence
....... for ,." ,; (&I- equ (83) IDd (81) in "'.(24D. It turns out • die iiIiII caMiIiDas ,..,.-0_
,:. r'(12. dill ...-.. 1't. It- o. Y,·';' "1 - -II. • 6, 11· It • 0, YI - - r'(}If, "z - 1J - 2, liz· - 4, Iz - 0 IIId
Yz-WY.12. SiaiIIr mulls II'C oIJCained for z;' except :;-0 IivinI z.- ZI- Zz-O.

ThUs, ...ilutilw eqns (A2) IDd (A4) into eqns (55) gives a set of oon-liMIr .............. wIIidI wen IOIved at
each lime step ... I standard Hewton-1taphson iterative procedure(25). For this purpClIC the aIpbnic equations wen
recast in the form

["" "IZ] {6'J {PIJ (AS)"ZI "n j.a 6z j.a == Pz j.a

where ,1;1 .. ,.1 +6,.1 and ZI;I- z.l +6z,,.J when j is the j iteration cycle at dimensionless time T. -1II4,.1IId

"11 =m,J(4T)'l+en. "IZ =- C:,.I - m,
lizi =- C(i+:,./)(r - Dl2r.

"n == a,J(4T)Z - A - (Cy,,/ - Cze - Ez,.1 - 0)(r

+(2Cz.I +1!Xz",1 +1)(r +(2Dz,,.J +F'Jl2r - 2az,.1,

p. = - tCcr.y,,/ +II.Y!.-I +1.Y!.-z+6..Y!._3)/(4T)Z

- (y. - ,zA/2 - (Cy.1- eze-Hz.I - 0)(2+,zQl2,

Pz== -(a.z./ +II.Z!.-I + 'Y.z!.-z +6",z!.-3)/(4,)'l-7. +ue
+(:,.1 +i){A +(Cy.1- Cze - Ez,.1 - O)/r)

+rB/2 +(Dy,,.J - Dze -F:,.I - H)/2r.

The iter8tions were terminated at T. when

(A7)
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